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This work is directed towards the development of algorithms for the

ASTER and HIRIS science/instrument teams. Special emphasis is being

placed on a wide variety of cloud optical property retrievals, and especially
retrievals of cloud and surface properties in the polar regions.

2. Research A(;tivities

2.1

2.1.1 ASTER Polar Cloud Mask

During this reporting period, the first draft of the Algorithm

Theoretical Basis Document (ATBD) for the ASTER Polar Cloud Mask was

reviewed by the ASTER Science Team. In addition, on 18 February, Dr. Ron

Welch briefed the Science Team on the salient aspects of the document.

Suggestions and comments were provided by the Science Team, which
were subsequently incorporated into a rewrite of the document. The new

version was resubmitted and was forwarded to the EOS program office for a

peer review. In May, Ron Welch attended the ATBD Review and presented
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an overview of the algorithm for the Polar Cloud Mask Standard Product, in
addition to the algorithms for the Cloud Special Products, and the Sea Ice
Special Products. He also attended the joint Japanese-American ASTER
Team Meeting. Rand Feind attended the Third Circumpolar Symposium on
Remote Sensing of Arctic Environments held the week of 14 May in
Fairbanks, Alaska and presented the paper "The ASTER Polar Cloud Mask
Algorithm."

The overall structure of the algorithm described in the ATBD is

multistage or hierarchical. The first stage classifies the unambiguous
feature vectors (i.e., the ones that are located close to class cluster centers)

in a fast process using table Iookups. For example, large contiguous areas
(i.e., hundreds of thousands to a few million pixels) of water or thick water

cloud, can be classified in less than a few minutes. Only spectral features

are utilized in this stage. The remaining unclassified, ambiguous pixels are

then assigned probable class memberships based on the proximity of their

feature vector. They then are passed on to a fuzzy expert. Here textural

features are computed to augment classification. The fuzzy expert applies

rules based on past experience to obtain a certainty measure associated

with a classification. In this stage, potentially 2 classes are associated with

each pixel if the fuzzy expert determines the pixel belongs to a mixed class.

The fuzzy expert is also augmented by the probable class memberships from

the first stage and spatial context. The spatial context is determined by the

classes of the nearest neighbor pixels. At this point all pixels in the scene

are classified (including an unknown class). As a final stage, a quality

assurance test is performed. Pixels are selected at random and reclassified

using an artificial neural network. The statistics for classification agreement
are then used to assess the confidence in the classification. A copy of the

current version of the ATBD is attached.

Our 23 Landsat TM Antarctic polar scenes were loaded onto disk and

we have selected approximately 200 training samples from those scenes.

An eigenvector analysis was conducted on those training samples and the
results indicated that water, snow/ice, and thick cloud samples are well

separated. This eigenvector analysis included the use of band ratios and
differences; however, no textures as yet. These results are encouraging in

that it appears significant portions of our polar scenes can be classified with

only spectral features using fast classification techniques. During the next

reporting period we will be generating the textural features for our samples
and also be selecting additional samples for classes in which we are

deficient or for classes which appear to be causing problems for the

classifier. The first version of the fast classifier is being tested on these

scenes,
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Because our aforementioned data set was limited to Antarctic

summertime scenes, during this reporting period we examined several
hundred Landsat TM Arctic scenes available from the EOSAT archive and

ordered 11 additional scenes. The imagery selected is of areas in Alaska,

Greenland, and Iceland. Vegetation, mountains, rivers, lakes and melt

ponds are present in these scenes - features not found in our Antarctic data

set. The additional data (44 9 track tapes total), each containing a quad of

Landsat TM data, were received during April and were loaded onto the

system. An additional 100 training samples have been extracted from this
data and the first version of the classifier is being tested on them. The

classifier is being modified to accommodate the new classes found in these

scenes. The training samples obtained indicate that the ratio of TM Bands 4

and 2 are very useful for identifying land features. An algorithm that works

well on both the Antarctic and Arctic data sets should be fairly robust.

The current version of the algorithm (based only on spectral features

and includes band ratios and differences) is being tested on our 22 Landsat

TM Antarctic scenes and 44 Landsat TM Arctic scenes. It appears that at

least 60 percent of the pixels in these scenes can be classified with a high

degree of confidence using only the spectral features and using fast

algorithms based on table Iookups and simple thresholding. It also appears
that the classification of a large fraction of the remaining pixels can be

narrowed to 2 or 3 choices with a high degree of confidence, again using

only spectral features. For example, it is possible to determine that a

spectral feature belongs to the class of water or thin cloud over water, but

not to any other class. We have also found that the use of low pass

filtering results in additional unambiguous feature vectors. As expected the

regions of thin ice cloud cause most of the problems for the classifier,

especially when they are over snow or ice covered surfaces. They are

equally bright in the visible bands and are equally dark in the near IR bands.

Temperature is not a reliable indicator either. We are still hopeful that the
bands differences in the thermal IR bands of ASTER will help resolve these

thin ice clouds due to their different emissivities. Unfortunately we

currently do not have any multispectral thermal IR imagery available. We

expect that some MAS data obtained over the Beaufort Sea will become

available in the upcoming months.

Tests of more traditional classification techniques such as Euclidean

distance and Mahalanobis indicate that they provide good classification

results when applied on a scene by scene basis (i.e., using the training

statistics unique to each scene), but perform poorly when applied over the

entire data set (i.e., using the combined statistics for all the scenes).

During the next reporting period, we will assessing the usefulness of

textures in classification. The work of previous investigators indicates some
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textural measures are more useful than others for classification; however,

most of those studies were conducted with relatively low resolution imagery

(e.g., AVHRR). Since our algorithm will operate on high spatial resolution

imagery, we will be investigating the usefulness of a large set of textures, in

the hopes of discovering a texture that is useful in the classification, that

previous investigators have not utilized. Of course, eventually, the final
feature vector will be pruned down to less than 10 elements. We will also

be investigating the optimum distance parameter for the textures based on

the gray level distance vector. The distance parameter used for computing

the gray level difference vectors for the AVHRR imagery are not necessarily

applicable in our high spatial resolution Landsat TM imagery. Wavelet

transforms also will be applied to these scenes to determine if they can be

useful in resolving ambiguous feature vectors. These transforms are a

texture measure that not only provide an indication of the spatial

frequencies present in the imagery but also the spatial location of those

frequencies.

Timing tests were also conducted between C and IDL for various

types of scalar, vector, and matrix operations. These timing tests will aid us

in determining at what point in the algorithm development process, our IDL
routines should be converted to C. (In addition, if there is any possibility of

having IDL functionality available through the toolkit, these results might

provide the rationale for making it available.) In some cases, C operations

are superior and, in others, IDL is. For example, C is much faster in

performing sequential scalar operations, while IDL is much faster in

performing vector and matrix operations. However, IDL is only faster in

performing vector and matrix operations when memory only needs to be
allocated once initially. If memory allocation is required prior to each

operation, then C is superior.

In a parallel effort, we are also investigating the viability of using a

relatively new technique called multistage neural networks. They are based
on a hierarchical structure in which a set of relatively small specialized

neural networks are connected together by a switching network. The

switching network selects a unique feature vector to be input to one of the

specialized neural networks. The switches select the feature vector and the

appropriate network based on expert knowledge of the classification

process. This system has several advantages over a single neural network.

Expert knowledge or experience can be implemented in the structure. It is

potentially faster and more accurate. It can also be trained faster as each of
the individual networks can be trained in parallel. If results indicate that

this system is faster and/or more accurate than the fuzzy expert, then it will

supplant the fuzzy expert in the second stage of the algorithm and the fuzzy

expert will be used to perform the quality assurance test.
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The preprocessing module for line/column dropout detection and

reconstruction is nearly complete. This first version uses a simple threshold

on the mean line/column gray level for missing line/column detection. Three

types of reconstruction techniques are being incorporated and are

selectable. They are nearest neighbor, linear interpolation, and inter-band

cross correlation. Only single and double line/column dropouts are

reconstructed. Three or more consecutive line/column dropouts are not

reconstructed and are labeled as bad data. A simple statistic for the number

of line/column dropouts for the entire scene is also computed. If it exceeds

a threshold (to be determined), the scene is labeled as unsuitable for cloud

masking. We are also investigating techniques for detecting and correcting

striping in the imagery. We do not have any good samples of striped

imagery so we are initially simulating the problem. We are testing the FFT
as a tool for detecting the striping in the imagery. We are planning to test

frequency domain filtering and Finite Impulse Response filters for destriping

the imagery.

2.1.2 Monte Carlo Simulation of 3D Cloud Effects

We ran some simple plane parallel test cases for some highly peaked

phase functions and verified that the radiance Pattern obtained from the
Monte Carlo simulation matches that obtained from an analytical model. We

are currently modifying the model to simulate cloud shapes approximated by

hyperboloids of 2 sheets. The rationale for using hyperboloids of 2 sheets
stems from the work of Kuo et aL, 1993 in which they showed that

maritime cumulus cloud fields are best fit by this geometric shape. During

the next reporting period we will be simulating the radiance pattern of cloud

fields in which the underlying surface reflectance is based on the
bidirectional reflectance functions of Hapke. We also plan to model various

types of cloud fields and compare the radiance pattern to those obtained

from plane parallel results. We hope to determine the cloud optical
thickness and effectiveradius retrieval errors when using the plane parallel

assumption on cellular cloud fields.

2.1.3 Registration of TIMS to AVIRIS Imagery Using Cloud

Morphology

A review of the paper "Registering TIMS to AVlRIS Imagery Using

Cloud Morphology" was received from the editor of IEEE Geoscience and

Remote Sensing. The recommended changes were applied and the paper
was resubmitted. We expect that the paper will be accepted for publication

and a final version of the paper will be provided as part of the next quarterly

report.
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THE ASTER. POLAR CLOUD MASK VERSION 1

ALGORTrHM THEORETICAL BASIS DOCUMENT

Ronald M. Welch, Manuel A. Penaloza, and Rand E. Feind

Institute of Atmospheric Sciences

South Dakota School of Mines and Technology

501 E. St. Joseph Street

Rapid City, South Dakota 57701-3995
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One of the mos: important environmental challenges facing mankind is the problem

of climate change. While it is recognized that mankind's activities affect the global

environment, a quantitative assessment of the magnitude of these changes presently is

beyond reach. A thorough description and understanding of processes at the earth's

surface and in the atmosphere is necessary before realistic climate prediction can be

realized. A quantitative assessment of the mag_aitude of potential global and regional

changes must be made before policy makers are likely to be persuaded to make difficult

economic decisions.

With the growing awareness and debate over the potential changes associated with

global climate change, the polar regions are receiving increased attention. Since

greenhouse forcings are expected to be amplified in polar regions (Wetherald and Manabe,

198(5; Schlesinger and .Mitchell, 1987; Steffen and Lewis, 1988), these re_ons may act as

early warning indicators of actual climate shi_s.

Global cloud distributions can be expected to be altered by increased greenhouse

forcing. In the polar reNons, cloud cover changes can be expected to have a significant

effect on sea ice conditions (Shine and Crane, 1984) and on regional ice-albedo feedback

(Barry et al., 1984). In particular, polar stratus is very important to the polar heat balance

and directly affects surface melting (Parkinson et al., 1987). However, in order to

monitor changes in polar surface conditions and polar cloudiness, more accurate

procedures must be developed to distinguish between cloud and snow-covered surfaces.

Owing to the similarity of cloud and snow-ice spectral signatures in both visible

and infrared wavelengths, it is difficult to distinguish clouds from surface features in the

polar regions. In the visible channels, thin ice, ice fragments, wet ice, and pancake ice

have low albedos and can be misinterpreted as water, melt ponds, or as thin cloud/haze.

Persistent surface inversions and low clouds in winter, and near isothermal structure and

extensive stratiform clouds in summer, limit discrimination in the infrared channels.

Clearly, spectral signatures alone appear to be inadequate for polar scene identification

(McGuffie et al., 1988; Rossow et al., 1989; Stowe et al., 1989).



Texturalsignaturescanbeusedto distinguishbetweencloud,snow-covered
mountains,solidandbrokenseaiceandfloes,andopenwater(Welchet al., 1990).

Likewise, textures derived fi'om high spatial resolution imagery can be used to distinguish

between various cloud types (Welch et al., 1988; Kuo et al., 1988). The combination of

spectral and textural features has proven to be effective for polar scene classification

(lEben, 1987, 1989; Key, 1990; Welch etal., 1990, 1992; Rabindra et aL, 1992;

Tovinkere et aL, 1993).

Artificial intelligence (AI) increasingly is being used for classification (Key et aL,

1989; Lee et al., 1990; Rabindra et al., 1992; Tovinkere et al., 1993). However there is

little information as to the strengths and limitations of various AI architectures. Tovinkere

et al. (1993) examined sk different AI approaches for polar scene identification. They are

(1) a feed forward back propagation neural network; (2) a probabilistic neural network;

(3) a hybrid neural nem'ork; (4) a "don't care" feed forward perceptron model; (5) a "don't

care" feed forward back propagation neural network; and (6) a fuzzy logic based expert

system. For the preseat algorithm development, we wiU focus upon fuzzy Iogic and the

"don't care" neural nor,york.

The ASTER Cloud Mask Algorithm is built upon a well-established foundation of

spec',ral and textural features which utilizes AI techniques to enhance classiC.cation

accuracy. There is a widely-held notion that AI techniques require orders of magnitude

greater computer resources than do the more traditional classifiers such as Maximum

Likelihood. It should be noted here at the outset that this perception is tot_y false.

While it is true that some AI techniques require a great deal more CPU time in their

training phases, they require about the same number of CPU's as traditional methods in the

operational environment.

This Algorithm Theoretical Basis Document is organized as follows. Section 2

includes the instrument characteristics, the labeling procedure, a description of the spectral

features, texture, and several artificial intelligence approaches used for classification.

Section 3 contains the algorithm description, including preprocessing, preliminary

classification, fuzzy expert classification, spatial context consistency tests and quality

assurance tests. Finally, Section 4 considers the constraints, limitations, and assumptions

used in the algorithm.

2.0 OVERVIEW AND BACKGROUND

Cloud masking is of critical importance in the polar regions. Clouds and snow/ice

surface features have similar characteristics in both the visible and infrared spectral ranges,

thereby making polar scene identification extremely difficult. Otten both high level cirrus

clouds and low level fog and stratus clouds are optically thin. In such cases, retrievals of

surface parameters such as albedo and temperatures are seriously compromised.

As part of the International Satellite Cloud Climatology Project (ISCCP), global

cloud cover is being retrieved operationally. Typical cloud masking algorithms assume
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that clouds can be detected using visible and infrared channel thresholds. Reflectance

thresholds typically are set about 3% above the background, and thermal thresholds

typically are set about 3_C below the background. Other approaches rely upon bispectral

thresholding (Minnis and Harrison, 1984) and a variety of statistical methods (e.g.,

Saunders and Kriebel, 1988). However, Rossow et al. (1989), Stowe et al. (1989) and

many other have reported difficulties associated with polar cloud cover retrievals. Indeed,

LANDSAT imagery shows that clouds often are darker than the background snow and ice

(Welch et al., 1990). In particular, cloud cover often is confused with melt ponds, thin ice

and pancake ice. In the infrared spectrum, low surface temperatures, strong inversions

and isothermal structure make cloud discrimination difficult.

There are three main factors that must be addressed in the development of an

operational polar cloud masking algorithm: (1) the choice of the feature ve_or, (2) the

choice of the classifier, and (3) proper identification and labeling of regions. First, from

the wide range of techniques employed by different groups, it can be seen that there is no

consensus as to what t?-pe of signatures are needed in a robust polar cloud/surface feature

classification scheme. However, it is generally recognized that spectral information alone

is inadequate. Difference and ratio channels and tex-mral measures need to be explored

further to determine k'there is an optimum feature vector tbr polar scene identification. In

this regard, Gray Level Difference Vector textural measures seem to offer a good

combination of discriminating ability and low storage and CPU requirements.

There is no consensus as to the size of the region over which tex'tures should be

computed. A new paper by Nair and Welch (1994) suggests that 16 x 16 pixel regions are

preferred. Selection of regions that are too small leads to unstable textural measures.

However, selection of regions which are too large leads to loss of information; i.e., the

region is progressively more likely to contain multiple classes. The 16 x 16 pixe! region

seems to provide the best compromise between tex-tural stability and discrimination of

features. As a caveat it should be noted that textural measures based upon third (cluster

shade) and fourth (cluster prominence) order statistics generally do not attain textural

stability with 16 x 16 pixel templates; considerab!y larger template sizes are required for

them. Therefore, these measures should be applied only aRer stability analysis is

performed.

AI classifiers can significantly increase classification accuracy. The main

drawbacks of the AI schemes are that these methods are not well understood by most

groups and that the training time may be longer than for traditional approaches. On the

other hand, in an operational mode the AI approaches are very fast. It is also worth

noting that the AI methods are both nonlinear and nonparametric. Thus, no particular

class structure (i.e., normal distribution) is assumed; rather, the classifier learns through

presentation of examples. The AI approaches also require far fewer training samples than

do traditional schemes, and the new AI approaches provide very high classification

accuracies. The most impressive of these techniques to date is the "Don't Care" Back

Propagation neural network (Welch et aL, 1992). Indeed, for regions containing pure
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classes,theaccuracyexceeds95%. Nevertheless,morework is needed to extend these

results to mixed classes.

A final issue concerns scene identification and labeling. No classification scheme

can be expected to produce accurate results if the labeling is incorrect. The old adage

"garbage in, garbage out" is especially appropriate here. The analyst needs to examine a

wide variety of information before labeling a region. A new Interactive Visual Image

Classification System 0"VICS) has been introduced which provides a wide variety of

analysis tools to the user. This system has greatly facilitated the selection of pure training

samples and accurate labeling. This is particularly important in polar scene analysis where

erroneous labeling is problematic. By virtue of using this system, very high classification

accuracies (>95%) been attained for polar regions.

This section includes:

• Experimental Objectives and Data. The basic elements of the cloud mask algorithm

are described here, along with the data and form of the output.

• Historical Perspective

• Instrument Characteristics

• Pixel Labeling

• Spectral Features

• Texture

• Artificial Intelligence Classifiers

2.1 Experimental Objective and Data

This is Version 1 of the ASTER Polar Cloud Mask Polar regions are defined in

this algorithm to consist of all land and water regions lying poleward of 60_2q" or 60°S.

Version 1 is designed to use t,A_NDSAT, TM, AVIRIS, TIMS, and MAS data. The

algorithm will be tested on all offlae polar data that we can acquire, including at least 24
LA_NDSAT TM scenes over Antarctica and all of the MAS scenes acquired by lV_tke King

over the Beaufort Sea. It will be modified as needed for Release 2 and delivered for use

with ASTER data.

The ASTER Polar Cloud Mask in part is designed as a validation tool for MODIS.

Several members of the ASTER cloud mask development team also are involved with the

CERES and MODIS global cloud mask algorithm development. Therefore, close

coordination between the ASTER, CERES, and MODIS efforts will be maintained.
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TheASTER polarcloudmaskingalgorithmreliesheavilyupon aheritageof
experiencewith AVHI_ LANDSAT, andAVIRIS dataanalysis.The algorithmconsists
of thefollowing elements(Fig. 1):

1) Preprocessing.Thissteplocatesmissinglinesandstripesin thedataandthen
performsreconstruction.This stepalsonormalizesthereflectancesfor solarzenith
angle.

2) Table Lookup Classification. This is a fast, preliminary classification of

unambiguous feature vectors located close to cluster centers. Only spectral

features, including band ratios and band differences, are used in this step.

3) Fuzzy Expert Classification. This step utilizes combinations of spectral and

textural features in a fuzzy logic artificial intelligence classifier. It also makes use

of the following ancillary data:

- 500 m resolution coastline data, with lakes and rivers.

- 10 minute resolution topogaphical data.

- 10 minute resolution ecosystem map.

- 18 km resolution U.S. Navy/NOAA weekly Sea Ice Product.

- 150 km resolution weekly NOAA Snow Data Product.

- 1 km resolution MODIS daily snow and sea ice mask (available after

launch).

- NMC Surface Temperatures

4) Spatial Consiszency Test. In this step the classification of each pixel is

compared to that of neighboring pixels and with the databases (eco_'stem, type,

elevation, snow-cover).

5) Quality Assurance Test. A small fraction of the scene (<1%) will be randomly
selected for reclassification with a hierarchical don_t care neural network. Statistics

are accumulated, and the quality of the classification is assessed, based upon the

statistics. If necessary, the scene is flagged for human expert evaluation;

otherwise, a 1-byte cloud mask is produced.

For Version 1 each pixel will be classified using a bit map:

unknown I thickcloud ishadowt icoI wotIw°erIcloud ice

All bits are set to zero, except as appropriate. For example, for a case of thin cloud over

broken sea ice, the thin cloud, ice and water bits would be set to a value of unity, with all

other bits set to zero. At present, the wet ice bit includes melt ponds, slush ice, and thin

ice. These features have values of reflectivity intermediate between that of water and

ice/snow, and with temperatures near 0°C. It is possible to identify specific features such
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ALGORITHM FLOW

Preprocessing -

Sample data to 30 m
Normalize

Missing lines

Destripin_

Table lookup classification __(unambi_ous feature vectors)

Fuzzy expert classification
or multi-stage neural network

(ambi_ous feature vectors)
!

"v'

I Consistency test I

[ Context test ]

[ Quality assurance test I

6__-.

Fig. 1: Algorithm flow chart
i
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asmeltponds,leads,andslushice, but this is not plannedin thecurrentalgorithm
development.It is alsopossibleto distinguishbetweenwaterandice cloud,but this alsois
not includedhere.

Oftenpixelswill becomprisedof mixed, classes, and it is potentially useful to

indicate the fractional presence of each class. An alternative bit map that we propose for

Version 2 enables recording of class percentages and reserves 2 bits per class. These 2

bits would code percentage ranges of a class within a pixel. The following table illustrates

the use of the 2 bits.

bit__.As description

O0 class present with the range 0-10%

01 class present within the range 10.01-50%

10 class present within the range 50.01-90%

11 class present within the range 90.01-100%

This scheme doubles the size of the bit map but it provides additional information to

researchers processing scenes with specific requirements. For example, an investigator

interested in surface samples at a high degree of confidence would only select bit

combinations of 11. However, another investigator interested in cloud properties might

select all pixels with cloud present at in fractions greater than 50% (i.e., 10 and 11 bit

combinations).

Much of our early algorithm development has been based upon AVttRR LAC

data. However, the current algorithms are based upon 24 LANDSAT TM Quarter scenes.

MODIS Airborne Sensor data acquired over the Beaufort Sea has been requested from

h/fike King and also will be used in this algorithm development.

Figures 2 and 3 each show nine of the LANDSAT TM scenes that we are using.
These scenes are all taken in or near Antarctica. These scenes are displayed as histogram

equalized three-band overlays, with channel 6 (infrared) as red, channel 5 as green and

channel 4 as blue. Note that a wide range of conditions are included: thin cirrus, thin and

thick stratocumulus, cumulus, ice-covered land, broken sea ice, slush, and melt ponds. To

ensure that the cloud mask algorithm is robust, we need a series ofLANDSAT TM scenes

for the Arctic, "including land areas. We also expect to obtain some MAS data of the

Beaufort Sea during the first half of 1994 which will be used for the same purpose.

We are using LANDSAT TM Bands 2-7, as they correspond closely to the

following planned ASTER bands:
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TM

2 (0.52-0.60 gm)

3 (0.63-0.69 gm)

4 (0.76-0.90 gin)

5 (1.55-1.75 gm)

6 (10.4-12.5 gm)

7 (2.08-2.35 gm)

ASTER

i (0.52-0.60 gm : VNIR)

2 (0.63-0.69 gm : VNIR)

3 (0.76-0.86 gm : VNIR)

4 (1.60-1.70 gm : SWIR)

13 and 14 (10.25-10.95 gm and 10.95-11.65 lam : TI_)

5-8 (2.145-2.185 grn, 2.185-2.225 gm, 2.235-2.285 ,am, and 2.295-

2.365 gm: SWIR)

The final ASTER algorithm probably will use only channels (i.e., 1, 3, 4, 5, 10, 13,

14). The other channels will be used as substitutes when either the primary choices are

bad or for redundancy tests.

2.2 Historical Perspective

In this section a number of key aspects to this algorithm development and in-

house experience with them are summarized. Each one provides a piece of the

classification strategy for the algorithm. However, the experience of many other

investigators is also incorporated in the classification methodology described in Section

3.0. Some of them include: Key, 1989; Li and Leighton, 1991; Ebert, 1987, 1989, 1992;

Key et al., 1990; Allen et al., 1989; Saunders and Kriebel, 1988; Raschke etal., 1992;

McGuffie et al., 1988; Ormsby and Hall, 1991; Sakellariou and Leighton, 1988; Crane and

Anderson, 1984; Simpson and Humphrey, 1990; King and Tsay, 1993; Menzel and

Strabala, 1993; Welch etal., 1988, 1990, 1992; Tovinkere etal., 1993; Rossow, 1989,

1993; Stowe et at., 1991; Rossow etal., 1989; Seze and Rossow, 1991; Kuo etal., 1988.

Much experience is based on low resolution (1-4 kin) AVHRR non-polar imagery.

Relatively little work has been performed on high spatial resolution polar imagery. In

particular, there is virtually no experience with high spatial resolution polar imagery for

the full compliment of 'ASTER channels (especially multispectral imagery in the thermal IR

region of the spectrum from 8-12 gm). Some classification methodologies do not require

features from thermal IR region and are only dependent on solar spectral region features;

therefore, methodologies applied to low spatial resolution polar imagery in the past are

certainly germane here. We expect the most significant differences will occur for textural

features. Higher spatial resolution imagery can manifest higher spatial contrast and

frequencies. As we gain additional experience with high resolution imagery, we expect

that the sets of textural features proposed herein and the parameters used to compute

them will be modified somewhat.

2.3 Instrument Characteristics

ASTER will provide data in the three spectral regions using three separate

radiometer subsystems. These are the visible and near-in.flared (VNIR) subsystem being

provided by NEC, the short wavelength infrared (SWIR) subsystem provided by MELCO,
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andthethermalinfrared(TIlt.) subsystemprovidedbyFUJITSU. The instrumentband
passes,radiometricaccuracies,andradiometricandspatialresolutionareNvenin Table 1.
TheVNIR includesaseparate,single-spectral-band(0.76-0.86gin, channel3B)
radiometerinclinedbackwardat anangleof 27.7° to theothersensorsto providea 15-m
same-orbitstereoscopicimagingcapability.A wide dynamicrangeandmultiplegain
settingswill helpensureusefuldata for avarietyof investigations.

Theswathwidth for all threesystemsis 60 km. The ASTER instrument has a

crosstrack pointing capability of 8.55 ° for the SWlR and TIR subsystems, and 24" for the

VNIR subsystem. This gives crosstrack observing ranges on the ground of approximately

_136 km and _343 km respectively, ensuring that any point on the globe v,iil be accessible

at least once every 16 days for the SWIR and TI_ and once every five days for the VNIR.

However, in most instances, all three radiometer systems will image the same 60-km

ground swath.

Table I. Spectral and spatial characteristics of the Advanced Spaceborne Thermal

Emission Reflectance Radiometer (ASTER). Asterisk indicates the stereo band. Stereo

B/H ratio 0.6

Wavelength

ReNon

VNIR

SWIR

TIR

Band

Number

ASTER

Spectral

Range

Radiometric

Accuracy

1 0.52-0.60 +/- 4%

2 0.63-0.69 +/- 4%

3

4

+/- 4%

+/- 4%

5 2.145-2.185 +/- 4%

6 2.185-2.225 ÷/- 4%

7 2.235-2.285 +/- 4%

8 2.295-2.365 +/- 4%

9 2.360-2.430 +/- 4%

10 8.125-8.475 1-3K

11 8.475-8.825 1.3K

12 8.925-9.275 1-3K

13 10.25-10.95 1-3K

14 10.95-11.65

Radiometric Spatial

Resolution Resolution

I
_<0.5% [ 15m

_<0.5% 15m

15m

30m

_<1.3% 30m

_<1.3% 30m

_<1.3% 30m

_<1.0% 30m

_<1.3% 30m

-<0.3K 90m

_<0.3K 90m

_<0.3K 90m

90m-<0.3K

1-3K _<0.3K 90m

2.4 Pixel Labeling

A critical aspect of the algorithm development is pixel and subregion labeling.

Accurate labeling is the key to accurate classification. Therefore, it is important to

provide the analyst with as much information as possible. Figure 4 shows an example of
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theInteractiveVisual ImageClassificationSystemCIVICS) which displays three-band

color overlays. A series of pull-down menus are available to the analyst which allow a

wide range of channel displays and image processing functions. By default all bands are

histom'am equalized for contrast enhancement. However, any combination of band

differences and band ratios can be designed and displayed on command. Additional

display features such as principal components, decorrelation stretch, canonical

transformations, and edge finding are being implemented.

The large central image is a full spaiial resolution subsample of the ori_nal image.

The re,on labeled "A" is water, "B" is shadow on ice, "C" is stratocumulus cloud, "D" is

ice-covered land, and "E" is broken sea ice. Directly under the central image are ten small

regions which display channels 1, 4, 5, 6, 7, 4/1, 4/5, 4/7, and 7-6. The analyst

immediately can examine the region outlined in the box in each of these channels. These

10 small regions also are used as icons for mouse control, as explained below. Starting at

the lower left comer of the monitor and moving to the right, a series of special purpose

displays are provided. First a spatial coherence (2 x 2 pixel plot of mean versus standard

deviation) (Coakley and Bretherton, 1982) is provided. Next are histograms of all three

channels (shown in red, m'een, and blue), where channels 4 (blue) and 5 (_.green) are

displayed in terms of albedo, and channel 6 (red) is displayed in terms of temperature (°C).

In the lower center is a 8x zoom of channel 1, followed by a three-color eNarged display

of the selected regions. At the bottom right, a color density sliced version of channel 1 is

shown; the percentage of pixels in each color range is given at the top right. In addition,

to the far right, a morphological dilation (Sen'a, 1982) is shown for channel 1. The analyst

has various options for each of these special displays which are activated by clicking the

mouse on any of the ten icons. Finally, three-dimensional cluster analysis is shown in the

center right cube; this cube displays 3-D clusters, computed from the selected region (i.e.,

box), for the red, green, and blue bands. The cluster cube rotates continuously, but can be

halted with the mouse burton. A trained analyst can see immediately from the three-

dimensional cluster display if the boxed region contains pure classes. In Fig. 3 the boxed

region labeled as "2" in the main display contains both cloud and water, which is clearly

differentiated in the 3-D cluster display.

2.5 Spectral Features

Clouds generally are characterized by higher albedos and lower temperatures than

the underlying surface. However, there are numerous conditions when this

characterization is inappropriate, most notably over snow and ice. Of the cloud types,

cirrus, low stratus and small cumulus are the most difficult to detect. Like, vise, cloud

edges are difficult to recognize when they do not completely fill the instantaneous-field-of-

view (NOV), i.e., pixet.

The NOAA Cloud AVt-IKR (CLAVR) algorithm uses all five channels of AVHt_

to derive a global cloud mask (Stowe et al., 1989). It examines multispectral information,

channel differences, and spatial differences and then employs a series of sequential

decision tree tests. Cloudfree, mixed (variable cloudy) and cloudy regions are identified
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for 2x 2GAC pixel arrays.If all four pixelsin thearrayfail all the cloudtests,thenthe
arrayislabeledascloudfree(0% cloudy);if all pixetssatisfyall thecloud tests,thenthe
arrayis labeledas100%cloudy. If i to 3 pixelsfail thecloudtests,but arerestoredto
clearbyrestoraltests,thenthearrayis labeledasmixed;if therestoraltestsfail, thenthe
arrayis labeledasvariableandassignedanarbitraryvalueof 50% cloudy. Thesetof
cloudtestsis subdividedintoDaytimeOceanScenes,DaytimeLand Scenes,Nighttime
OceanScenes,andNighttimeLand Scenes.

TheInternationalSatelliteCloudClimatologyProject(ISCCP) cloudmasking
algorithmis describedbyRossow(1989, 1993),Rossowet al. (1989) and Seze and

Rossow (1991). Only two channels are used, the narrowband VIS (0.6 gm) and the IR

(11/am). Each observed radiance value is compared against its corresponding Clear-Sky

Composite value. This step uses VIS radiances, not VIS reflectances. Clouds are

assumed to be detected only when they alter the radiances by more than the uncertainty in

the clear values. In this way the "threshold" for cloud detection is the magaimde of the

uncertainty in the clear radiance estimates. As such this algorithm is not a constant

threshold method such as used in the CLAVR algorithm.

The ISCCP algorithm is "based on the premise that the observed VIS and IR

radiances are caused by only two types of conditions, 'cloudy_ and 'clear', and that the

ranges of radiances and their variability that are associated with these two conditions do

not overlap" (Rossow, 1993). As a result, the algorithm is based upon thresholds, where a

pixel is classified as "cloudy" only if at least one radiance value is distinct from the inferred

"clear" value by an amount larger than the uncertainty in that "clear" value. The

uncertainty can be caused both by measurement errors and by natural variability. This

algorithm is constructed to be "cloud-conservative", minimizing false cloud detections but

missing clouds that resemble clear conditions.

The present algorithm borrows from the CLAVR and ISCCP approaches, and

from other sources, as noted. The following figures show preliminary results for the

follov_ing ten classes:

1. Water

2. Slush/wet ice

3. Sea ice

4. Snow over land

5. Thin (semi-transparent) water cloud

6. Thick (opaque) water cloud

7. Thin cirrus

8. Thick cirrus

9. Larid
,

10. Shadows over ice

14



2.5.1 DaytimeScenes

Figure5 showsscatterdiagramsfor severaldifferentbandcombinations:
band5/band2 versusband3, band6 versusband4-band5, andband7/band4 versus
band6. The upper plots show the range of scatter; the corresponding lower plots show

the cluster centers within one standard de,Aation of the mean. The second stage of the

current algorithm uses navigation to determine if the pixel is over land or ocean. Then it

uses a lookup table to make a preliminary classification. The lookup tables are based upon

the results shown in this section.

At present we use a very conservative lc standard for class differentiation, as

shown in Fig. 5. This is to assure accuracy of the results. However, only about 10% of

the pixe!s are classified with this preliminary prcedure. Further analysis is being performed

to de:e:-mine if the lc standard can be relaxed to include a larger number ofpixels without

severe!y compromising accuracy.

Figure 5 shows that with the proper selection of channels, it is possible to

discNT.inate between water, shadows, sea ice, and thin cirrus. Note, however, that water

cannot have a temperature below 271 °K. The low temperature values of channel 6 are

due to a LANDSAT calibration problem. To correct for this situation, the channel 6

temperatures are adjusted so that water pixels have a value of271°K.

Figure 6 shows a second scene v,_ith the same band combinations. Note that the

water pixels are about 8°K warmer than those in Fig. 5. Therefore, a different adjustment

for channel 6 temperatures is required. This shows that the channel 6 sensor is not stable,

causing considerable difficulties for us in developing the algorithm. Therefore, we have

had to rely more heaviiy upon AVHRR results for the thermal channel portion of the

algorithm.

Figure 7 shows a different set of channel combinations for two additional scenes.

Once again, the channel 6 values for water show variability. For Figs. 5-7, channel 6

temperatures average 10-12°K below 271 °K. Note that the various channel combinations

permit a preliminary separation of classes. As shown in Fig. 4, the cloud shadows over ice

(labeled B) are clearly distinguishable. While not shown in these figures, detection of

cloud shadows over water is possible using histogram equalized band 1 data.

For the polar reNons solar zenith angles range from 60 ° to 85 °. The observation

angles vary only slightly across the swath since ASTER and LANDSAT are primarily

nadir-viewing instruments. Figure 8 shows semi-infinite direct-beam albedo versus

wavelength for several values of direct-beam zenith angle (Wiscombe and Warren, 1981).

This suggests that solar zenith angle effects should not be large for the ASTER (or

LA.NDSAT) V'IS channels. However, these effects become important for LANDSAT

channels 5 and 7 (ASTER channels 4-8).
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Figure 9 shows seN-infinite direct beam albedo as a function of wavelength for

various ice grain radii. A comparison of Figs. 8 and 9 suggests that grain size (which

increases with aging) causes larger albedo variations than do solar zenith angle changes

from scene to scene. Therefore, the cluster centers shown in Figs. 5-7 can be expected to

vary due both to solar zenith angle and ice grain size variations.

2.5.2 Nighttime Scenes

The cloud emissi'dty versus cloud geometric thickness is shown in Fibre 10 for

AVHRR channels 3-5 as a function of particle size (Yamanouchi and Kawa_chi, 1992).

Note that channel 3 emissivities vary simaificantly from those in channels 4 and 5. The

difference in emissiviw is largest for smaller particles, for both water and ice clouds.

Figure 11 shows a scatter diagram of AVHR T4-T 5 versus T3-T 4 (Yamanouchi

and Kawaguchi, 1992), when IT4-TsI >_AT D, then cloud is present (Yamancuchi and

Kawa_chi, 1992; Stowe et al., 1991). The points scatter widely for clouds, while clear

pixe!s concentrate in a narrow region. The AVHRR T4-T 5 test will be replaced by

ASTER T13-T14.

ASTER does not have a 3.7 gm channel. However, it does have a 8.5 lam channel

(channel 10). Figure 12, shows the complex indices of refraction of ice and water across

the atmospheric window region (Warren, 1984). Minimum values in the imaNnary

component are found in :he 8-10 gm reNon, indicating weak absorption. At larger

wavelengths both ice and water absorb more strongly; however, ice absorbs much more

strongly than water at wavelengths of 11-12 }am. Differences in the cloud radiative

properties between 8.5 and 11 gm allow us to substitute the ASTER 8.5 gm channel for

the AVHRR 3.7 lam channel.

Figure 13 shows that the combination of8-11 lam versus 11-12 gm channels

provides the means to distinguish between thick and thin cirrus, water cloud, and multi-

layered cloud (Menzel, 1994).

Textural features are important for the nighttime cloud mask. Indeed, Welch et aL

(1988) showed that hi_ spatial resolution textural measures alone are sufficient to

distinguish between cirrus, stratocumulus, and cumulus clouds. Textural features alone

also can distinguish between cloud and surface features in the polar regions (Welch et al.,

1990). However, more work must be done on cloud masking using the infrared channels.

Figure 14 shows AVHRR channel 4 (i.e., 11 gm) means and standard deviations for 18

polar classes (Ebert, 1987). Shown are the mean and the maximum entropy measures.

The combination of spe_ral and textural measures is effective for polar scenes.

2.5.3 Spatial Consistency Tests

The first test, described in Rossow and Garder (1993), is similar to that of spatial

coherence in that it is aFplied only to IR brightness temperatures. It is based upon the fact
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that clear pixels tend to be warmer than cloudy pixels and to exhibit less spatial variability.

First a small local re,on is defined, composed ofpixels with the same ecosystem. The

spatial domain is appro.'dmately (30 km)'-. The pixel in the local region with the largest IR

(11 gm) temperature (Tmax) is found. All pixels colder than the spatial contrast (SC)

value

T < Tma x - ASC

are labeled as cloudy; all others, including the warmest pixel, are labeled as "undecided".

Note that not only is it important that the class pixels be identical (land or ocean), but also

that the size of the re,on be chosen care_lly. All coastal regions and all land regions

containing mixed land and water pixels are excluded from this test since the inherent

contrast between land and water surface radiances would dominate the results. For

regions that are too large, there is increased likelihood of spatial variations in surface

parameters. The shape of the test regions also can be important, since meridional

gradients in surface temperature generally are larger than zonal gradients. The size of the

contrast threshold must be larger than the magnitude of natural variations at the surface

and smaller than that caused by clouds. Since cloud variability can be as small as surface

variability, values of_sc = 3.5K are chosen over ocean (Rossow et al., 1993) and

ASC = 6.5K over both ice covered water and land.

The reflectance uniformity test is applied by computing the maximum and

minimum values of ASTER channel 1 or channel 3 reflectances within a 2 x 2 pixel array.

Pixel array with channel 1 reflectance differences greater than 9% over land or channel 2

reflectance differences greater than 0.3% over ocean are labeled as mixed (Stowe et al.,

1993). The value over ocean is low because a cloud-free ocean is almost uniformly

reflective, while non-uniformity is assumed to be caused by cloudiness.

Note that this test is being refined; we require that the ecosystem be the same for

the pixel array. The mean and standard deviation of reflectance values for each of the 59

ecosystems will be computed for ASTER channels 1 through 3 as a function of season. It

is expected that this test can be substantially improved.

The Uniform Low Stratus Test (ULST) (Stowe et al., 1991) is a dynamic

threshold based upon the 11 gm brightness temperature T 4. The ULST threshold AULST

is described as:

AULST = exp {A + BT4} - C

where A = -9.37528, B = 0.0341962, and C = 1.0 (oceans) and C = 3.0 (land). The

constant C increases for land from the ocean value and depends on surface type. This test

is applicable for the temperature range 264 K to clear-sky T 4. This test will be adapted

for ASTER data; new coefficients will be determined.
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A AVttRR CirrusTest(CIRT) is appliedat nightoverboth landandocean
(Stoweet al., 1991). The CmT is defined as (T3-T5)/T5. It also employs a channel 4-

dependent threshold to implicitly account for water vapor effects. This threshold was

defined by using the simulation database to plot cloud-free CIRT values against the

associated channel 4 temperatures. The relatively high optical transmittance of most cirrus

clouds, along with the spectrally different Planck blackbody radiance dependence on

temperature, causes large (T3-T5) differences for cirrus clouds. The CIRT threshold is

given by:

CTXT--0.485 _ 1.775 x 103T4 .

When T 4 < 273 K, this t_seshold is set to zero; when T 4 > 292 K, it is set to 0.033. This

test atso will be adapted for ASTER data by determining a new set of coefficients.

2.6 Texture

Tex-ture is often ;interpreted in the literature as a set of statistical measures of the

spatial distribution of m'ay levels in an image. Here it is assumed textural information is

contained in the average spatial relationships that gray levels have with one another

(I-Iaralick et al. 1973).

The GLDV approach is based on the absolute differences between pairs of gray

levels I and 'J found at a distance d apart at angle _ with a fixed direction. The difference-

vector probability densiw function P(m)d,, is defined for m = I - :l, where I and J are the

corresponding gray leve!s, and is obtained normalizing the gray-level frequencies of

occurrence by the total frequencies. From this density function, the following textural

measures are computed:

mean #d,, = _mP(m)d.,
m

standard deviation

ff
d,_ 2 ]i/2-

m

contrast CONd, _ = ]Cm2P(m)d,_
m

angular second moment

ASMd, _

entropy ENTd. _ =-_P(m)d. , IogP(m)d,,
m
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local homogeneity

cluster shade

[ 3]_(m-/_d,_,) P(m)d,)

SHADd, _ = m cr3
d,o

cluster prominence

m- .a,o) p(m)d,o

PROMd, _ = cr4
-3.

These textural measures are computed for LANDSAT channels 4, 5, and 6 for d=l pixel

separations and at qb=0° and 90 °. Plots of representative cloud texture measures as a

function ofpixel separation distance and angle qbare shown in Welch et al. (1988) and for

a variety of ice and snow backgrounds in Welch et al. (1990).

2.7 Artificial Intelligence Classifiers

The ASTER Polar Cloud Mask Algorithm relies upon several artificial intelligence

approaches to improve classification accuracy. While these approaches require more

"time" to learn, operationally they are no more cpu intensive than are traditional

approaches. All of these algorithms have been written in-house; they require no

commercial software.

2.7.1 Back Propagation Neural Networks

A neural network consists of objects called nodes and weighted paths connecting

these nodes. Each node has an activity represented by a real number. This activity value

is computed as a nonlinear-bounded monotone-increasing function of a weighted sum of

the activities of other nodes that are directly connected to it.

The proposed neural network has four processing layers: 1) an input layer

consisting of a node for each of the selected spectral and textural features; 2) two hidden

layers, each consisting of a set of nodes; and 3) an output layer, consisting of a node for

each class. The activity of node K is denoted by V K, and a weight on a path fi'om node L

to node K is denoted by Wkl. Then
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where f is a nonlinear function.

The determination of the appropriate weights WKL is referred to as learning. A

neural network may be _'iewed as a nonlinear vector-valued function: O = F(I), where O

is a vector with one component for each activity of an output node, and I is a vector with

one component for the actMty for each input node. In the supervised learning mode, for

each possible input vector I, an associated output vector O is specified. The function of

the learning algorithm is to choose the value of the weights so that Y(I) is a good

approximation of O (Lee et al., 1990). Backpropagation (Rumelhart et al., 1986) refers

to the process of interac:ively determining the weights WKL that locally minimize the

global error E:

N 2

L_

The algorithm is a special case of gradient search in which the weights are initialized as

small random numbers and are repeatedly updated at the nth iteration according to the rule

AW = -rIVE , Wn+ 1 = W n + AW, where W is a vector composed of the wei_ts, VIE is the

gradient of the global error, and T1is the learning rate. Additional details are given by Lee

et al. (1990) and Hecht-Nelsen (1990).

2.7.2 Don't Care Neural Networks

A perceptron network consists of an input layer, an output layer and weights

which define linear separating surfaces. Each pattern class Ci is separated by hyperplanes

from all other surfaces. It has long been known that this network has very limited

capabilities. Consider three tangent circles, each of which represents a class in 2-space.

Neither traditional classifiers nor the perceptron network can find separating surfaces to

correctly classify the points in the circles. However, the problem can be solved by a three

layer network or by training the network to find pairwise linear separating surfaces.

Training a network to produce pairwise linear separating surfaces requires that for any

class Cm, the linear function corresponding to the separating hyperplane Ci/C j will have

the value 1 ifm = i, a value of 0 ifm =j and a "don't care" X output otherwise.

For a two-layer network, the surfaces separating the various classes are linear.

Similarly, in a multi-layer network, non-linear surfaces separate the classes. Again,

pairwise separating surfaces can be constructed using "don't care" outputs. In the

perceptron case, the addition of"don't care" outputs broadens the repertoire of problems

the network can solve. For multi-layer networks, a different benefit results. The hidden

layer allows the decision surfaces to be formed into arbitrarily complex shapes. The

surfaces initially are "simple", and additional training (i.e., iterations) introduces the more
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complex elements into the separating surface. The network can be trained to find the

simpler pairwise separator surfaces and then construct a more complicated separating

surface from pieces of these simpler curves. As a result, fewer iterations are required to

train the network. Our studies show that this approach can simplify the training

significantly and reduce the training time by two orders of magnitude.

The steps in the algorithm can be summarized as:

Step 1: Determine the number of output nodes needed to represent the pattern

classes.

Since the network will produce pairwise separating surfaces, the number of output

nodes required for this technique is:

2

where N is the number of classes. In contrast, traditional approaches only require N

output nodes.

Step 2: Build the class representations.

Consider the desired node outputs for a class to be a bit string, where each

position in the bit string serves as a discriminator between two classes. For each pair of

classes, select a bit not previously chosen to be the discriminator and set that bit in one

string to 0; set that same bit to 1 in the second string. After all pairs have been processed,

fill the remaining positions with "don't care" symbols. This simple process can be easily

automated and introduces only a small overhead penalty to the training algorithm.

For example, a 4 class problem requires 6 output nodes. Using the above

algorithm, one possible assignment of output values to classes can be found in the

following table.

class 1

class 2

class 3

class 4

Bit Number

1 2 3 4 5 6

1 1 1 x x x

0 x x 1 1 x

x 0 x 0 x 1

x x 0 x 0 0

Possible mapping of classes to node output values

Note that bit 1 discriminates between class 1 and 2, bit 2 discriminates between class 1 and

3, and so on. The symbol "x" denotes a don't care value.
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Step 3: Train the network.

During training, error is measured at the output nodes and used to adjust the

network weights using back-propagation. In our experiments, the error measure:

t;( )2network_ error = actual k - desired k
k

was used. However, unlike the standard back-propagation algorithm, the above error is

not calculated at the nodes which have a don't care designation. The set of weights that

will be adjusted during a particular training episode is, therefore, a function of the input

pattern. Note, however, that all input to hidden weights are updated.

Step 4: Classifij the pattern.

To classify the pattern, simply compare the outputs to the bit strings for each class.

Note that an output pattern can match at most one class since there is a discrimination bit

for each pair of classes. However, it is possible that an output pattern will not match any

class. As with standard back-propagation, the option exists to force a match by selecting

the class to which the output pattern is in cIosest agreement.

2.7.3 Fuzz?." Logic

Class mixtures are often classified as a single class, thereby leading to poor

information extraction. This is due to uncertainty in the membership concept of the

classical set theory. This representation scheme has difficulty in dealing with elements that

partially belong to two or more sets. In order to improve the information representation,

the concept of fuzzy set theory has been used. Fuzzy logic is concerned with formal

principles of approximate reasoning; i.e., it aims at modeling imprecise modes of reasoning

to make decisions in an environment of uncertainty.

The greater expressive power of fuzzy logic derives from the fact that it contains,

as special cases, not only the classical two-value and multivalued logical systems but also

probability theory and probabilistic logic. The main features of fuzzy logic that

differentiate it from traditional logical systems are the following:

1. In two-valued logical systems, a proposition p is either true or false. In

multivalued logical systems, a proposition may be true or false or have an intermediate

truth value, which may be an element of finite or an imprecise characterization of a

numerical truth value.

2. The predicates in two-valued logic are constrained to be crisp in infinite truth

value set T. In fuzzy logic, truth values are allowed to range over the fuzzy subsets ofT.

Thus the fuzzy truth value may be viewed as the sense that the denotation of a predicate
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mustbea nonfuzzy subset of the universe. In fuzzy logic, the predicates may be either

crisp (e.g., "mortal", "even") or fuzzy (e.g., "tired", "tall", "cold").

3. Two-valued as well as multivalued logics allow only two quantifiers: "all" and

"some". By contrast, fuzzy logic allows, the use of fuzzy quantiflers exemplified by

"most", "many", "several", and so on. Such quantifiers may be interpreted as fuzzy

numbers that provide an imprecise characterization of the cardinality of one or more fuzzy

or nonfuzzy sets. In this way, a fuzzy quantifier may be viewed as a second-order fuzzy

predicate. On the basis of this view, fuzzy quantifiers may be used to represent the

meaning of propositions containing fuzzy probabilities, and thereby make it possible to

manipulate probabilities within fuzzy logic.

FUZZY MEMBERSHIP FUNCTIONS. S function or membership function: The

S function is defined as follows:

=

"0

X=_

1_ 2
1

Rather than maintaining a table of data defining the membership function, the data

can be easily and compactly represented by a formula. Since the polar spectral and

textural features usually can be represented approximately by a Gaussian distribution, the

S function is an inadequate representation of the data. A modification of this function,

which is called the 1"I function, then is used to represent the fuzzy sets. The 1-I function is

defined as follows:

(S (x; 3, -/3,"f -/_ / 2,"f) x _<"f

= [1- / x

In a Gaussian distribution, the spread extends to about 30, which contains 99% of

the energy. Initially, the fuzzy sets used in our studies closely approximate the Gaussian

curve. However, this can result in a number of samples being unclassified by the expert

system. The spread can be gradually increased such that most fuzzy sets overlap. This

improves the classification accuracy of the unclassified samples, and it does not change the

accuracy of the samples previously classified.

TIlE FUZZY EXPERT SYSTEM (ES). A fuzzy ES includes two other elements,

in addition to the components of a conventional system [Cox, 1992]: "fiazzifiers" which

convert inputs into their fuzzy representations, and "defiazfifiers" which convert the

output of the inference process into a single numerical value within the range of values of
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theoutputvariable. Thenumericaloutputisusedto adjustthestateof thesystembeing
controlled.

A fuzzy control variable may have several states, each state being represented by a

membership function. Suppose we are able to classify cloud from clear land and open

water by just using the albedos computed from channel one (CH1) and temperature from

channel four (CH4). Figure 7 shows the different states for these two measures, with CH1

defined by the five albedo states: very low, low, medium, high and very high, CI-I4 defined

by the three temperature states: cold, normal and warm.

The albedo measured in CH1 generally is higher for clouds than for land and

water. CH4 generally is warm for land and cold for clouds. The above reasoning might

lead to the following set of fuzzy rules:

Rule 1: IF CH1 is very low and CH4 is normal THEN class is water

Rule 2: IF CH1 is low and CH4 is warm THEN class is land

Rule 3: IF CH1 is medium and CH4 is cold THEN class is cloud

As shown is Figure 15, for a given image sample, the input value for CH1 is 0.17

and 0.4 for CH4; the fuz_zifier then computes the degree of membership (DM) for one or

more of these fuzzy states. In this case, the states "very low" and "low" of CH1 have a

membership values of 0.5 and 0.25, respectively. The other states for CHI are zero.

Similarly, the only state of CH4 with a value different than zero is "normal", with a value

of 0.60. The confidence level (CL) for each rules is computed by combining the DMs

associated with each condition using the following certainty, theory formula [Luger and

Stubblefield, 1989]:

CL(C1 and C2) = MINODM(C1), DM(C2))

I k:w low mec_'_,, high very Ngh
1.0. ,,

• 0.0 0'.17 1.0 CH1

A
I __.,Id normal _

1.0 I

0.0 0.4 1.0 CH4

Figure 15" Fuzzy states for the Ch 1 and Ch 4 features
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whereC1andC2aretheconditionsof therule. TheCL for rulesl, 2 and3are:

rule 1:rnin(0.25,0.60)= 0.25

rule2: rain(0.25,0.0)= 0.0

rule3: rain(0.0,0.0)= 0.0

Sincerule1hasthe higherconfidencelevel,theclassselectedis "water"which
correspondsto the actionof rule 1.

Theclassificationprocessis performedwith theaidof a generalfuzzyexpert
system(GFES). GFEScanhandledifferentmembershipfunctionsfor describingthe
differentstatesof thecontrolvariables. Thesefunctionsare:triangular,trapezoidal,one-,
two-, andthree-dimensionalnormaldistributions,PI function,Sfunction,andelliptical

cones. The height for aH these functions is equal to 1, since any membership function can

have any real value between 0 and 1. The multivariate normal distribution is a
modification of the one dimensional normal distribution.

Usually, triana'ular, trapezoidal, PI and S functions are used by knowledge

engineers for the definition of fuzzy ES's. Since our classifier uses control variables which

are often assumed to belong to normal distributions, we have extended the usual set of

function types to accommodate the definition of fuzzy states with one- and multi-

dimensional normal distributions. Our experiments show that by increasing the number of

dimensions, the classifier is able to separate better the different classes.

Three input files are required to run GFES: a control variable file, a rule file, and a

facts file. The control variable file requires the following information for each control

variable: the name of the variable (e.g., temperature), the type of function(e.g., 2), the

number of states, the state names (e.g., hot, cold), and the values that define each state's

membership function (e.g., the xl, x2, x3 values for a triangular fuzzy set).

The format for each control variable is:

( variable_nametype

(state_.name_l

(state_name_n

#_of_states )

value_l vaiue_2 ... )

value_l value_2 ... )
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Therule file definesthesetof rules for the expert system. Using the above set of

rules, the last two rules are defined in GFES as follows:

( CH1 low )

( CH4 warm )

=>

( class land )

( CH 1 medium )

( CH4 cold )

=>

( class cloud )

The first two lines of each rule represents the IF part, and each line is referred to

here as a condition. The last line of a rule represents the THEN part. This line is referred

to here as the action. The notation for writing a rule and facts follows the notation used by

the CLIPS expert system shell developed by NASA at the lohnson Space Center

[Giarratano and Riley, 1989].

The facts file consists of the values for the input control variables. These values,

referred to here as the fact vector, are enclosed in parenthesis and are separated by spaces.

The data from the three input files must be read before any logical action can take

place. First, the values for each input variable are converted into their fuzzy

representations. That is, the degree of membership 0DM) on each input variable state is

computed. Next, for each rule the program computes the confidence level (CL) of the

rules using the formula described above.

The CLs of two rules, R1 and R2, with the same action are combined using the

following certainty theory formula:

CL(R1, P,2)= CL(R1) + CL(P,.2)-CL(R1)*CL(R2)

The output consists in the class or classes present in the region or pixel with an associated

value representing the percentage of the class within the region or pixel.

2.7.4 A Multi-Stage Neural Network Classifer

The usefulness of neural networks for classification problems is based upon a

network's ability to construct arbitrarily complex decision surfaces. This frequently is

accomplished by training a single network to separate all classes simultaneously. Thus,

the training algorithm must find a single set of weights which accurately classifies all
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samples.This is analogous to sorting a million names by moving all of them at once and

hoping that the resulting ordering is closer to a sorted list. People sort large lists by first

separating the elements into smaller groups, such as by the first letter in a name. The

resulting sublists are thea sorted. A similar approach is taken with the network structure

described here. The classes are first grouped into clusters and a separate neural network,

a "leaf" network, is associated with each cluster. A "switching network" is responsible for

selecting the appropriate leaf network to perform the final classification task.

This approach has several advantages over the traditional monolithic training

algorithm. First, the resulting network is a collection of"plug-in" components. If a more

efficient switching network can be identified, that component can be removed from the

tree and replaced with the new network without disrupting the operation of the remaining

networks. This structure does not require homogeneous topologies or training algorithms,

giving the designer fle.'dbility to attack localized problems with appropriate solutions.

Similarly, if additional data from one class becomes available, the corresponding leaf

network can be removed, retrained and reinserted into the tree without affecting the

remaining networks. A second advantage is that the resulting networks are smaller and

thus require less time to train. In addition, since fewer separating surfaces must be

identified, each network has a simpler problem to solve than a single network. This too

contributes to decreased training requirements. Third, since the networks operate

independently, they can be trained in parallel. A multi-processor system or a collection of
workstations can be used to train the structure in approximately the amount of time

required to train the largest network in the structure.

METHOD. The structure consists of four components: the switching network,

the leaf networks, the clustering algorithm, and the error recovery algorithm. Note that a

single decision network may not be appropriate for every problem. A hierarchy of

switching networks is also implemented, and while effective, is not necessary for our

problem. However, ether classification tasks may require additional layers of switches.

As stated above, the leaves of the decision tree are neural networks. In these

experiments all networks are trained with back propagation, but it is not necessary to do

so or even to have all networks trained using the same algorithm. One of the advantages

of the "plug-in" components is that any type of network can be inserted at any point in the

tree.

The number of leaf networks and the distribution of classes among the leaf

networks may be accomplished by a clustering algorithm. A variety of algorithms exist for

this purpose. One such algorithm, found in (Duda and Hart, 1973) builds a collection of

minimal spanning trees to form clusters. This suffers from a tendency to form "chains"

rather than clusters and may only be appropriate as a starting point. Analysis of the data

may also reveal a total lack of structure, which, while it gives no guidance on how many

clusters or which classes to include in each, may indicate that the selection of these

parameters is not critical to correct operation of the algorithm.
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An error recovery,algorithmis necessaryto handlesituationsin which the wrong

leaf network is selected by the switching network. In many situations, ira network is not

able to classify a vector, it will produce small output at each of the output nodes. The

current solution is to set a threshold value and if none of the outputs reaches the threshold

value, the current leaf net-work is declared to be inappropriate and an alternate selection is

made. The leaf network which receives the second largest output value from the

switching network is sele_ed and the process is repeated.

The algorithm can be described as follows:

step 1: Cluster the classes.

step 2: Train a switching network to classify a vector as a member of a given

cluster.

step 3: Train each leaf network to discriminate between the classes for which it is

responsible. Note that all of the leak'networks and the switching ne_vork can be

trained simultaneously.

step 4: Present a testing vector to the switching network. The switching network

will select a leaf network. The leaf network will classify the vector or have an

insufficient response to make a classification. In that event, the switching network

selects the next most likely candidate and repeats step 4.

PRELIM_ARY RESULTS. This method was tested on a character recognition

problem. Computer generated characters in six fonts were digitized and a feature
extraction mechanism was used to create 156 vectors, each containing 14 elements (Fuji

and Monita, 1971; Logar etal., 1994). These were divided into groups of 78 vectors.

One goup contained vectors representing each character in three fonts and was used for

training. The other m'oup of 78 vectors contains the remaining three fonts and was used

for testing.

The switching ne_-arork used was the simplest possible: a neural network was

trained using back propagation to determine which leaf network should do the

classification. Four leaf networks were used, thus the "switching network" contained 14

input nodes, one 4 node hidden layer and 4 output nodes. The network was trained using

back propagation and was able to identify the correct leaf network 100% of the time for

the training data and 98.7% times for the testing data.

The four leaf networks were also trained using back propagation and each

consisted of 14 input nodes, one 6 node hidden layer and 7 output nodes. The number of

leaf networks was selected arbitrarily after clustering algorithms run on the data revealed

that the vectors were approximately uniformly distributed throughout the vector space.

As a consequence, no guidance was available for this problem on the number of clusters.

The composition of each cluster was determined by a variation on the nearest neighbor

algorithm which was modified to create balanced clusters.
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Severalcriteriawereusedto comparethis approach to a single back propagation

network. First, consider the size of the network. A single back propagation network with

14 input nodes, 20 hidden nodes and 26 output nodes was trained. Many configurations

were tried but this topology produced the most accurate predictions. For that network, 60

nodes and, including bias weights, 846 weights were required. The number of weights is

particularly important since each must be updated for one iteration. Training was stopped

at 700 iterations by the criteria that the change in the error over a 100 iteration period was

smaller than a predefined epsilon. This resulted in a total of 592,200 weight updates.

Since weight updates are the most expensive part of the algorithm, this is a good measure

of relative speed. In contrast the decision tree neural network with its five networks

contained 130 nodes and 636 weights. However, since each leaf network is assigned a

simpler task, fewer training iterations were required. The average number of iterations for

all five networks was 400, resulting in 254,400 weight updates. In this case, the decision

tree neural network required approximately 25% less storage for weights and reduced the

number of weight updates by approximately 42%. Timings were also conducted using a

486-based PC. The single network required 5.39 seconds/iteration to train, or a total of

3773 seconds. Two timings must be considered for the decision tree network. First, code

was written to train the networks simultaneously on a single processor machine. The total

time was 402.8 seconds. However, one of the advantages of this architecture is that all

five ne_vorks can be trdned in parallel. Thus, a five processor machine, or five processes

rurming on five dedicated workstations, can produce the weights in appro.'dmately 168.4

seconds, or the maximum of the five independent training times. Thus, trairting times were

reduced by 89% for the single processor implementation. Note that the number of weight

updates is reduced by 42% while training time is reduced by 89%. This difference can be
attributed to the fact that the amount of time required for a weight update is dependent

upon the size of the network.

Classification accuracy was also measured. The single network had an accuracy of

100% on the training vectors and 82.7% on the testing vectors. The multi-stage network

also classified 100% of the training vectors and 87.2% of the training vectors correctly.

Thus, performance was not affected and the time and space required to achieve this

performance were significantly reduced.

FUTURE WORK. The experiments reported here are limited and much more

work must be done to fully develop these ideas. Each of the four components must be

more deeply studied. The switching network has been designed to allow the incorporation

of "hints", information external to the vector to be classified. At present, the hints are

given a numeric value and simply incorporated into the switching node output. The

mechanism has been developed, but not yet tested, to allow the incorporation of a fuzzy

logic and rule based system to provide the hints to the switching network. The rule based

system may produce its candidate for which leaf network should do the classification.

That information, in conjunction with the output from the switching network, can be used

in a fuzzy logic algorithm to determine which leaf network to use.
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Oneobviousaddition to the leaf'networks is the incorporation of the "don't care"

training algorithm (Logar et al., 1994; Watters, et al., 1993). In a don't care network, the

separating surfaces are combinations of surfaces which separate pairs of classes rather

than the traditional approach of separating one class from all others. The algorithm is

described above and has proven very effective in a variety of applications. As with the

structure described above, don't care networks build complicated separating surfaces fi'om

simple components, each of which is easier and quicker to identify than the single

separating surface.

Only the simplest clustering techniques have been considered here. Additional

work must be done to determine a suitable algorithm or to identify criteria for selecting

from a collection of clustering algorithms. One approach that has yet to be explored is the

use of a genetic algorithm for forming clusters. Such an algorithm would start with

random clusters and use genetic operators to "breed" better solutions, that is, better

clusters.

Finally, a better error correction algorithm is required. The method described

above is not effective if'the switching network makes a mistake, sends a vector to the

wrong leaf network and the leaf network claims to strongly recognize it as a member of an

incorrect class. However, the effectiveness of the existing mechanism may be improved by

either an alternate clustering algorithm or by the incorporation of the rule-based hints and

fuzzy logic switching system.

3.0 ALGORITHM DESCRIPTION

In this section some required preprocessing steps are described as well as the

algorithm itself. Two types ofpreprocessing are required. First, preprocessing of each

scene is required to provide a one to one spatial relationship among the bands in the 3

ASTER sensors (i.e., VNIR, SWIR, and TIR). In addition, some normalization is

performed. Second, prior to making the algorithm operational (or during subsequent

evaluation periods), various functions, weights, parameters need to be defined based on

training samples, empirical evidence, and a priori knowledge. Next, an overview of the

algorithm is provided, folIowed by a more detailed description of the algorithm

classification strategy.

The major algorithmic steps include (Fig. 16):

(1) Preprocessing

(2) Table Lookup Classification

(3) Fuzzy Expert Classification

(4) Spatial Context Tests

(5) Quality Assurance Tests
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Algorithm Flow Chart
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3.1 Preprocessing

A number ofpreprocessing steps are made to the ASTER data before the cloud

masking algorithm is applied. These preprocessing steps are described below:

(i)The AVHRR data will be navigated using the World Data Bank II coastline

system at 500 m resolution. The world is divided into five regions, each of

which contains the following: coastlines, islands, lakes, reefs, salt pans, ice

shelves, glaciers, rivers, raikoads, international boundaries, and internal

political boundaries. An example of navigation accuracy is shown in Fig. 17
for AVI-IR_ data.

(2) The NAVY 10 minute database is a 1080 x 2160 byte array covering 180

degrees in hfimde from north to south pole and 360 degrees in longitude. The

global elevation map is shown in Fig. 18. The surface elevation characteristics

are_

(3)

(4)

2

3

Table 4

Codes Feature

0 salt or lake bed

1 i flat or relatively fiat

I desert (or for high lat, glaciers or permanent ice)

[marsh

4
5 i

lake country or atoll

major valleys or river beds

isolated mountains, ridge or peak

low mountains

average mountains

extremely rugged mountains

62 ocean

Note that multiple characteristics are defined in this system; an example is code

14 = flat lake country or atoll. In addition, this code contains the percentage

(an integer between 0 and 100) of water in the 10 minute box. The global

elevation map is shown in Figure 19.

The EPA Global Ecosystems (WE1.4D) Database also is a 1080 x 2160 byte

array which contains 59 different ecosystems classes (Fig. 20).

The U.S. NAVY/NOAA Sea Ice Product provides weekly reports of fractional

ice coverage at spatial resolution of about 18 kin.
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(5) The NOAh Snow Data Product provides weekly report of snow cover at a

spatial resolution of 150-200 km; snow is reported if the grid cell is more than

50% covered.

(6) The NMC 3-hour surface analyses of temperature and wind speed.

(7) The MODIS daily snow/ice output (available after launch).

First the scene will be navigated, with coastlines, oceans, lakes, rivers, marshes,

reefs, permanent ice re eions, deserts and salt beds noted. Second, each land pixel will be

designated as relatively flat, valley, isolated mountainous regions, low mountains or hills,

average mountains, or hi_ mountains. From the NOAA Snow Data Product each land

pixel will be designated as probably/probably not snow covered. Each land pixel also will

be classified as to its ecosystem, along with a more general ecosystem classification of

urban, forest, woodland, gassland, shrubland, tundra, arid vegetation and highland

vegetation. Ocean reNons will be classified as water, coastline (including isIands),

possibility of isolated icebergs, marginal ice zone, and nearIy solid ice (leads may be

present).

3.1.1 Image Navigation

The navigation of satellke imagery is an important preprocessing procedure in

digital image analysis. The latitude and longitude of each pixel must be knov, na to the

desired accuracy if data from two sensors are to be matched. The distortions due to earth

shape, earth rotation, variations in satellite orbit and satellite altitude must be accounted

for in any navigation procedure. There are two types of image navigation. The first is

called direct image referencing where the geographic grid is distorted to match the satellite

image projection and the second is called inverse image referencing where the image is

corrected and resampled to fit a desired geographic map projection. The second method

is widely used in the remote sensing community, and several navigation packages are

available (e.g. Emery et al., 1989). The inverse image referencing can be further divided

into two methods. In the first method, known ground control points (GCPS) can be used

to correct for errors in earth shape, scan geometry, satellite orbit and satellite altitude.

This method relies on known geographical features in visible imagery and is often time

consuming because the user must interact with the image and locate the GCP's. Also, this

method cannot work over the open ocean because there are very few GCP's. The second

method is to utilize the satellite ephemeris data (orbital parameters) and locate the satellite

as a function of time. This method is less time consuming and no user intervention is

necessary. One common source of error in this method is the inaccurate timing at the

ground station where the data are collected. The ephemeris satellite navigation techniques

can be used to produce navigated images with an accuracy of a single pixel (I-to and Asem,

1986).

0vet land, it is o_en possible to locate geographical features in visible imagery and

utilize a map overlay in order to test the accuracy of the navigation procedure. The
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correctionsfor anyshiftsin the imagearetermed"nudges"byusers. In thisprocedure,
thewholeimageis movedupor down until thegeographicfeaturesin the imagelineup
with themapoverlay. Thisoffsetcanthenbeappliedto the latitudeandlonNtudeof each
pixel. Overthe openocean,it is often difficult to detectgeographicalfeatures.However,
highspatialresolutioncloudfeaturescanbeused(FeindandWelch, 1994).

WehavenavigatedseveralAVHRR LAC andGACimagesover landandopen
ocean.An exampleis showninFig. 17. Thissameprocedurewill beusedonthe
LANDSAT andASTER data.Errors innavigationof about500m areexpected.

3.1.2 Preprocessingof ImageData.

TheASTER dataareobtainedat3 differentspatialresolution(i.e., _,,'NIR-15 m,

SWIR-30 m, TIR-90 m). The classification is derived at 30 m spatial resolution.

Therefore, after the data are tested/corrected for missing lines/columns and striping, the

VNIR data is subsampled, by half, to 30 m pixel spacing. The TIR data is supersampled,

by 3, also to 30 m pixel spacing. The SWlR data remains unaltered. The V'NE1. and

SWIR band DNs are then normalized for solar irradiance, solar zenith anne, observation

angle, and calibration coefficients. The TIR band DNs are converted to temperature.

3.1.3 Preprocessing for the T)on't Care' Neural Network.

A 'don't care' neural network is used in the final stage of the algoriztun as a quality

assurance tester. The structure of the network is as described below. Before launch or

before the algorithm becomes operational, feature vectors comprised of the spectral and

textural features (Welch et al., 1990) for each training sample are constru_ed. The neural

network is then trained and tested on these samples. The weights from the training are

then used in the operational neural network. We expect that multiple sets of weights will

be required, based on time of day, solar azimuth, bidirectional reflectance, etc.

3.1.4 Preprocessing for the Fuzzy Expert.

° "Filtering" - The feature vectors of the selected samples from the images pass through

a "filter" process which removes samples with feature values that exceed four standard

deviations from the mean. Four standard deviations is used to include approximately

99.74% of the "good" samples with feature values within four standard deviations of

the mean.

.
"Normalization" - The filtered vectors are normalized using the sigmoid normalization

process which maps each value from the feature vector into the interval (0,1) {Logar,

et al., 1992). This normalization technique transforms the mean of each feature 0.5.

That is, the feature vector elements are clustered around the value 0.5.

3. "Training and testing sets" - Two-thirds of the data set from the spectral and textural

database, which replacement, are used as the training data for the classification
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process.The otheronethird is usedasthetestdata. Theterm "replacement"means
thateachsampleselectedastrainingsamplemaybeselectedmorethanonce.This
insuredanunbiasedestimateof classificationaccuracy.Thetrainingsampleisselected
randomly.Trainingandtestsamplesareseparatedfor eachclass. Theaccuracyof the
classifieris determinedby computingthepercentageof correctidentificationof the
testsamplesfor eachclass.

4. "Statisticalparameters"- Themean,standarddeviationandcovariancematrixare
computedfor all classesandfor all features,usingthesamplesin the trainingset.

. "ES rules and control variable files" - The control variables and fuzzy rules files are

generated using the statistic parameters computed in the previous step. Our fuzzy ES

has a rule for each class. Each rule has the same number of conditions and only one

action.

. "Tuning" - Conditions that do not contribute to the accuracy of the classification are

removed from the fuzzy rules. This process is accomplished by first generating

sensitivity reports and then selecting features that better discriminate the classes. In

the next section we discuss several experiments perform in order to define the

appropriate set ofr',:les. We expect to automate this step in the near future.

3.2 Algorithm Overview

The methodolo_ implemented in this algorithm can be characterized as

hierarchical or multi-stage, as opposed to flat or single layer. The intent is to link a

multiplicity of techniques in such a way that efficiency and speed are optimized while not

compromising classification accuracy. Some class members are classified at a high level of

confidence using a small set of spectral features using simple decision surfaces while

others require larger feature sets (comprised of both spectral and textural measures) using

more complex classification strategies such as fuzzy logic and neural networks. To the

maximum extent possible the classification strategy is derived in knowledge of physical

phenomenology. Parameterization is used only as necessary.

The algorithm has five stages or levels (see Figure 1). The first stage is where

feature vectors close to class cluster centers are conservatively classified, with small

computational expense, through the use of table look'ups. The samples not classified by

the first stage then are passed to the second stage. In the second stage additional features

are computed and a fuzzy expert is used to classify ambiguous feature vectors. In the

third stage a consistency test between the first and second stages is performed and

reclassified pixets are as unknown if they are inconsistent. In the fourth stage, a spatial

context test is performed on the samples reclassified as unknown from the third stage.

And finally, in the filch stage, a quality assurance test is performed, in which a neural

network is applied to a random sampling of classified feature vectors. The scene is

flagged for human expert evaluation ifa simple statistical threshold is not achieved.
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3.3 Algorithm Description

3.3.1 First Stage-Classificationof RegionsMth Feature Vectors near Class

Cluster Centers.

The first level or stage of processing is based on a set of lookup tables, each

constructed in 2-dimensional feature space. Table lookups allow us to classify large sets

of pixels efficiently. For example, computationally expensive techniques such as minimum

distance classification (which requires Euclidean distances), or Maximum Likelihood

classification (which requires covariance matrices and inverses) are not required. In

addition, conditional thresholds (conditional on other features) are possible and

amorphous (non-circular, non-Gaussian) decision regions can be constructed. Currently,

the size of the tables corresponds to the radiometric resolution of the LANDSAT sensors

(i.e., 0-255). The size of each table is 2562 or 64 K. (Note: Tables in which the ASTER

TIR channels are used as features might require a larger range of indices to retain the 12-

bit dynamic range of the data.) The size of the tables potentially can be reduced pending

further testing and evaluation. Each table value has a one-to-one correspondence with a

specific range &values for a pair of features. Each table location is coded Mth an

unambiguous or ambi_ous classification.

The algorithm currently uses 2 tables for a particular scene. Additional tables will

be constructed as we lem_ more about the causes of class cluster displacement for a given

class from scene to scene. Such behavior is related to one or a combination &the

following: seasons, time of day, solar azimuth, bidirectional reflectance, synoptic

conditions. The boundaries between classes in the 2D feature spaces have width. The

width is determined empirically such that only feature vectors near class cluster centers are

unambiguously classified. The lookup table boundary regions contain codes indicating the

probable classes or mix-rares of classes for those pixels. These boundary pixels are

deferred to the next level &processing. An illustration of.this first level of processing is

depicted in Fig. 21a, b. Here we show Band 4/Band 3 versus Band 3 and (Band 3-Band 1)

versus Band 3 of ASTER. These two 2D feature spaces have been partitioned into

unambiguous classes and ambiguous boundaries between classes.

The spectral re,on of ASTER Band 4 is 1.6 - 1.7 gm. Solar radiation in this

region is strongly absorbed by snow and ice, relative to clouds, due to their larger particle

sizes and smaller single scattering albedo (e.g. see Fig. 22). Ice cloud absorbs more

strongly than does water cloud but less than snow/ice. Therefore, Band 4 is very useful

for discriminating any kind &cloud (thin, thick, water cloud, ice cloud) from water, snow,

or ice backgrounds. The reflectance of polar land surfaces can be brighter than ice in

Band 4, but another feature (Band 3-Band 1) is used to distinguish land surfaces from

snow and ice surfaces.

We use the ratio of Band 4 to Band 3 because it is more strictly a function of

particle size than is Band 4 alone. Band 3 is an ASTER VNIR channel at 0.76 - 0.86 gm.

Water has low reflectance (<0.1) in this spectral range. Shadows on ice/snow surfaces are
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somewhat brighter and unshadowed ice/snow are very bright. In Fig. 4 the distribution of

water/shadows/ice�snow can be seen in the Band 4/Band 3 versus Band 3 feature space.

They ali very nearly lie on line from water to highly reflecting snow. In the plot, the pixels

to the right of water and left of snow/ice can be shadowed snow/ice or mixtures of any

combination of water, shadowed snow/ice, and snow/ice.

We derive the utility of ASTER Band 3-Band 1 from Li and Leighton, 1991. (The

spectral range of Band 1 is 0.52-0.60 gm.) Land surfaces (including both soil and

vegetation) are brighter in Band 3 than Band I, resulting in a positive difference for land

surfaces. In addition, clouds manifest very, small differences in brightness as their radiative

properties are very similar in these 2 spectral regions. Ice/snow surfaces are generally

brighter in Band 1 than in Band 3 due to Rayleigh scattering; therefore, ice/snow surfaces

result in negative values for Band 3-Band 1. In this feature space we can see that clear

pixets over land lie on a straight line between water and the brightest land feature. The

pixets just to the right and above water are shadowed land and/or mixtures of any
combination of water, land, and shadowed land. Similarly, the same linear relationship

between water and bright snow can be seen (and as also seen in the Band 4/Band 3 versus

Band 3 feature space). Classifying pixels in these 2 feature spaces will produce redundant

results. Currently, we use the Band 3-Band 1 feature to classify land and the Band 4/Band

3 feature to classify snow/ice. However, as we continue to test the algorithm,, we will

compare classifications and determine the accuracy of each. Eventually, they will probably

be used in an either-or scheme. The cloud partitions in the two feature spaces are also

redundant. Presently, we don't know which one provides the most accurate classification.

The feature vectors located in unambiguous feature space are assigned high confidence

values for classification, and their corresponding bit maps are constructed. An additional

threshold test for water is applied to the ASTER TIR Band 13 and ASTER "v_'IR Band 4.

Any regions greater than the Band 13 threshold (271°K) and less than the Band 4

threshold (0. l) are classified as water. The remaining pixets whose feature vectors lie in

boundary regions will then be passed on to the next processing stage.

3.3.2 Second Stage - Fuzzy Expert Classification.

The textures described in Welch et a/.(1990) are computed for each of the pixels

with ambiguous classification from stage 1. Pixel arrays are used for the nei_borhoods;

the neighborhood is centered over the pixel to be classified. Then the spectral and textural

features are input to a fuzzy expert system. The decision rules for each of the classes and

the set of IF-THJEN tests for each rule are determined during processing. (Note: The

current structure of the fuzzy expert requires one IF-THEN test for each feature in each

class. Some preliminary results indicate that higher classification accuracies can be

achieved by reducing the number of tests in some rules. Additional study will determine

whether any feature reduction can be implemented in the cloud mask algorithm fuzzy

expert.) The fuzzy expert then computes a certainty value for each class. If a binary

classification scheme is used (i.e., 1 bit/class) then the bit for any class with a certainty

value geater than 0.35 is set to 1. Ifa 2 bit (or 4 level) classification scheme is used, then

the 2 bits are set as follows:
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Certainty Range Classification Bits

<0.09 00

0.10- 0.34 01

0.35 -0.89 10

0.90 - 1.0 11

The fuzzy expert also tests the consistency of the classification with ancillary

information such as coastline navigation, ecosystem maps, and surface temperatures.

3.3.3 Third Stage-Classification Consistency Test.

In the next stage, a stage 1 classification consistency test is performed. Each

ambi_ous pixel from the first stage is coded with a value indicating the possible classes

for the pixel. If the fuzzy expert selects one of the possible classes then the classification

process is terminated for that pixel. If not, the pixel classification is labeled as unknown.

3.3.4 Fourth Stage-Spatial Contex-t Test.

For any pixel with an unknown classification, one final test is performed. The

spatial context is tested by examining the 8 nearest neighbors. If6 or more of the nearest

neighbors are the same class then the pixel is assigned to that class by setting the 1 bit

code to 1 or the 2 bit code to 11. If6 or more pixels are from 2 of the same ambiguous

classes assigned in stage 1, then the two 1 bit codes corresponding to the 2 classes are set

to 1 or the 2 bit codes are set to 01 and 01.

3.3.5 Fifth Stage-Quality Assurance Test.

Finally, as a quality assurance test of the entire scene classification, approximately

1000 pixels are selected at random in which the spectral and textural features are

computed and supplied to a trained don't care neural network. A statistic is computed for

the fraction of classification agreements. If the statistic is less than 0.85 the scene flagged

as suspect and deferred to a human expert for evaluation.

An alternative to the second level of processing (i.e., the fuzzy expert) is based on

the preliminary study described previously. The multi-stage neural network classifier has

yet to be tested on polar feature vectors. If this technique is found to be at least as

accurate as the fuzzy expert and faster, it will supplant the fuzzy expert as the second level

classifier. The fuzzy expert would then be substituted in the fitth stage as the quality

assumer.

3.4 Variance and Uncertainty Estimates

This section is based upon our previous experience of classifying polar regions

using AVHRR LAC data.
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Using a combination of eight spectral and textural features derived from AVI-IR

polar scenes, six artificial intelligence classifiers were used to generate results for 10

classes: water, solid sea ice, broken sea ice, snow-covered mountains, stratus over ice,

cirrus over ice, stratus over water, cumulus over water, multilayer cloudiness, and land.

While there were other distinguishable classes present in the scenes, there were insufficient

samples of these classes to present to the classifiers. Results are shown in Table 2.

Two thirds of the data set from the spectral and textural data base, with

replacement, were used to generate the training data for each classifier. The remainder
was used as test data to determine classifier accuracy. The term "replacement" means that

each sample may be setected more than once. This insures an unbiased estimate of

classification accuracy.

To generate the results, ten realizations were computed. That is, the training data

were randomly selected on the basis of a random-number seed. A different random-

number seed leads to a different selection of training data and somewhat different results.

To compute the theoretical accuracy of the results, it is necessary to average over multiple

realizations. Computations made for ten to a hundred different realizations have been

made. It was found that the theoretical accuracy of the classifier can be measured

sufficiently well with only ten realizations.

This theoretically sound bootstrap approach treats the simulation on a

nonparametfic basis. Estimates of both the correct classification probability..a and its

standard deviation _s are shown in Table 2 for each of the six classifiers. Results are

shown for each of the 10 classes and for the total. A total of l0 bootstrap sample sets

were used in each case.

A similar approach is being used with the LANDSAT TM data. Two thirds of the

data will be selected as training data, with replacement. The remainder will be used as test

data. Ten realizations v-ill be made in order to calculate the theoretical accuracy and

variance of the classification results. We estimate that accuracies of 95% to 98% can be

achieved for the seven ciasses using the ASTER polar cloud masking algorithm. This is in

large part due to the high spatial resolution available which allows for positive

identification of features using IVIC S.

3.5 Practical Considerations

3.5. I Numerical Computation Considerations

The majority of this algorithm development work is being done in Version 1 using

IDL. Due to its ease of use and its display capabilities, IDL is the language of choice for

most of our staff. However, we are making every effort to streamline and optimize the

code. At present, the Version 1 algorithm to be delivered to the DAAC contains elements

ofIDL, LMSL, and C++'. A C++ Class Library is being constructed to simulate several of
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theIDL andIMSL subroutines.Timing testsbetweenIDL, IMSL, and C++haverevealed
that manyof theIDL and12vISLcallsareunnecessarilyCPUintensive. We will replace
inefficientIDL and B'_,ISL function calls with the C++ Class Library functions. This

approach allows the research staff to concentrate their efforts on algorithm development

using the most convenient IDL and IMSL function calls without having to worry about the

CPU expense.

With regard to the AI classification algorithms, it is uncertain at this time which

offers the best combination of run time and accuracy. A thorough intercomparison of the

AI classifiers and traditional methods, such as parallelepiped, minimum distance,

Mahalanobis, and maximum likelihood, is planned in FY94-95. The purpose of this

exercise is to document the most accurate and computationally efficient algorithms. Other

techniques also are being investigated. In one case, easily identified pixels are being

classified using both thresholding and the parallelepiped method; then, for those pixels

unclassified in the first step, a succession of ever more CPU intensive classifiers will be

applied. The goal is to determine if a classification hierarchy produces faster and more

reliable results. To date, the AI approaches produce much higher accuracies with run

times which are comparable or even faster than the traditional methods.

The speed of the algorithm is scene dependent. Scenes completely obscured by

cloud, for example, and that do not contain missing lines/columns or have striping, will

require no more than a minute on machine running at 6-8 FLOPS. Compiled scenes that

contain sig_aificant areal fi'actions of thin cloud could require several stages of processing.

Without further experience it is difficult to estimate a worst case or average time to

process one scene. It is important to remember that most polar scene classification studies

to date have been conducted on low resolution imagery using only neighborhoods of

pixels, not every pixel in a scene.

3.5.2 ProgammingfProcedural Considerations

Much of this code is being developed using C++. However, C++ has no ANSI

standards at this time. Therefore, a very conservative application of C++ functions is

planned, to assure portability to any platform. We will test the code on Silicon Graphics,

SUN, and IBM RISC machines. To meet the PGS Toolkit specifications for Version 2,

conversion to C will be made.

Note that all of the AI classifiers have been developed in-house. Therefore, there

is no reliance upon other commercial soRware packages. We will use the PGS Toolkit

once it is made available. However, at present, all code is being developed by the staff'.

3.5.3 Calibration and Validation

Two approaches will be used to validate the output of this algorithm (ie., the

classification of the ASTER imagery at the spatial resolution of the SWIR sensor -

approximately 30 m). The first will occur before launch and will take advantage of data
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collectedduringthepolarFIREHI IFO programwhichmaybeconductedin 1995-1996.
A completecomplementof dataobtainedfromsatellitesensors,airbornesensors(in situ,
imagingspectrometers,profilers,lidar, etc.)andsurfaceobservations(includingradar,
balloons,humanobservations,etc.)will providefor unambiguousclassificationof the
regionunderstudy. Thealgorithmwill thenbeexercisedonimageryobtainedfrom the
MAS andLANDSAT TM (andpotentiallyAVIRIS andT_IS). Theresultswill thenbe
comparedto determineclassificationaccuracy.

Another approachwill takeplaceafterlaunch. Periodically, ASTER scenes will be

selected at random and a human polar scene classification expert will conduct a manual

classification. We expect initially that several scenes per month will be validated and as

the algorithm is adjusted and as greater confidence or adequate classification accuracies

are achieved (>90%), the frequency of manual validation v,ill be reduced to a few per

month.

Between now and the time oflauncl't, the algorithm will be tested on any high

spatial resolution imager:' that becomes available (e.g., from MAS, AVIRIS, TIMS, and

LANDSAT TM). A human expert will be evaluating and validating the algorithm's

classification results.

3.5.4 Quality. Control and Diagnostics

Our current plan for assessing the quality of the output is to randomty select a

predefined number ofpixels from each scene (eg., 1000 from a 2000 x 2000 pixel scene)

and process them with a 'don't care' neural network or fuzzy expert using all spectral and

textural features. If the classification agrees, the quality oft he classification will be

deemed to be good. If they disagree, the quality will be flagged as suspect. Statistics for

this comparison will be accumulated and some percentage classification agreement

threshold will be set (eg., <85%) which will then flag the classification of the entire scene

as suspect and requiting human intervention or evaluation.

3.5.5 Exception Handling

3.5.5.1 Missing Scan Lines/Columns.

The module for handling missir/g scan lines/columns is performed as a

preprocessing task prior to generating the cloud mask. We expect that the VNIR and

SWIR will potentially manifest missing columns since they are pushbroom sensors and the

TIN. will manifest missing rows since it is a scanning sensor. The module implements 2

functions which are detection and reconstruction/rejection. Of course, if no missing scan

lines/columns are detected than no correction is applied. If the scan line/column criteria is

not met (see the next section), the data is rejected for further processing; the cloud mask

bit map will indicate that the data is of inadequate quality for classification.

3.5.5.2 Rejection Criteria for Missing Scan Lines/Columns
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If3 or moreconsecutivescanlines/columnsaredetectedthan those3 linesare
rejectedfor classification.In addition,a runningstatisticfor the numberof scan
lines/columnsper 10lines/columnsis computed.If thatvalueexceeds3 thenthe 10
lines/columnsfor that statisticis rejectedfor classification.

3.5.5.3 Detection

We assumethat theimageryis providedto the modulein segmentsor scenes(as
opposedto a continuousstream).Two statisticsarecomputed.The first is themean
digitalnumberfor eachscanline/columnandtheother is a 10line/columnslidingmean. If
themeanfor a scanline/columnis lessthanaTBD threshold (e.g., 5), the line/column is

considered suspect. Since a small digital number could be derived from a large contiguous

region of water/ocean (in the VNIR or SWIR) or a large contiguous region of thick, very

cold cloud (in the TIR), the second mean is utilized. If the difference between the

line/column mean and the running mean is greater than a TBD threshold (e.g., 5), the

line/column is classified as missing. If a coastal region or cold cloud boundary, were

perfectly aligned along a scan line/column, the second test (i.e., the difference in means)

could incorrectly classify, lines/columns as missing; however, this possibility, of this

condition is very remote.

3.5.5.4 Reconstruction

After all the bands have been screened for missing lines/columns, the lines/columns

that pass the criteria of section 3.2.5.2 are reconstructed. Two types of reconstruction are

required, either for 1 lone missing scan lines/column or 2 adjacent scan line_'columns.

One lone missing scan line/column is linearly interpolated from the 2 adjacent scan lines.

Two missing scan lines are replaced by their adjacent nearest neighbors.

An alternative technique is being investigated which should provide better

reconstruction than the aforementioned technique. It is taken from Mather (1991). The

technique requires that another highly cross correlated band be available and that the

missing lines/columns being reconstructed in one band are not also missing in the cross

correlated band. For example, if ASTER band 5 has a missing column then band 6 is used

in the reconstruction. Similarly, if band 10 has a missing line than band 11 is used in the

reconstruction. A digital number v of a specific pixel in a single missing line is computed

as follows:

vij,k = M {vij,r - (vij+l, r + vi,j.l,r)/2} + (vi,j+l, k + vi,j_l,lc)/2

where i and j are the column and line indices, respectively, and M is the ratio of the

standard deviation of the pixels in linej of band k to the pLxels in linej or band r. For a

missing column, the equation is modified as follows:

vi,j, k = M {Vid,r - (vi+l,j, r + vi,.ld,r)/2} + (Vi+lj,k + Vi_ld,k ) ]2
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For reconstructingpairsof missinglines/columnstheindicesj-l, j+l, i-l, and i+1 are

replaced in band k byj-2, j+2, i-2, and i+2 as appropriate.

3.5.5.5 Striped Imagery

The module for destriping imagery will be applied in sequence following the

missing scan line/column module as a preprocessing step to generating the cloud mask.

The destriping module, like the missing scan line/column module, is performed in 2 steps.

First is detection of striping and the second, if necessary, is reconstruction. We assume

that since the VNIR and SWIK are pushbroom sensors that imagery from these sensors do

not suffer from striping. However, since the TIR is a scanning sensor, striping can occur,

and we assume that, if present, it has a periodicity equal to the number of scan elements in

the sensor (e.g., 10 lines).

3.5.5.6 Detection

As striping is periodic, the frequency domain is used for detection. In each of the

5 TI2_ bands 15 columns from the approximately 700 columns of imagery are Fourier

Transformed. The 15 columns of data are selected uniformly across the width of the

image_'. If the average ma_itude spectrum for these 15 columns exceeds a TBD

threshold near the spatial frequency corresponding to expected striping periodicity (i.e., 1

cycle per 20 lines) and the first harmonic (i.e., 2 cycles per 20 lines), the entire image is

flagged as striped.

3.5.5.7 Reconstruction

If the imagery is flagged as striped, then a technique from Mather (1991) is applied

to the imagery. As in section 3.2.5.4, we assume that the imagery is provided as a

segment or scene. The technique is based on histogram matching and assumes that the

relative frequency of imaged feature (i.e., actual radiances) do not vary from one element

of the scan sensor to another across the entire scene. The technique is implemented as

follows. A target or nominal cumulative histogram (of gray levels) is computed for the

entire image. A set of cumulative histograms (i.e., 10) then is computed for each of the

lines corresponding to a specific sensor element. For example, if there are 10 elements in
the TIR scan sensor then 10 cumulative histograms are computed, one each for lines 1, 11,

2 l, ... and lines 2, 12, 22, ..., etc. A table lookup is then constructed for each possible

gray level (0 to 4095) and each of the 10 sensor elements. The table lookup values are

derived from histogram matching each of the 10 element cumulative histograms to the

target or entire image cumulative histogram. For example, the frequency value for a

specific gray level in an element histogram is compared to the target histogram. The gray

level that corresponds to the first frequency value in the target histogram greater than the

frequency value in the element histogram then becomes the new gray level in the destriped

imagery (i.e., the table lookup value). All of the pixets in the scene are then remapped to a

new set of gray levels derived from the table lookup values.
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Anothertechniqueisbeinginvestigated which is conceptually simpler; however,

implementation is pending testing. The technique is based on the work of Pan and Chang,

1992. In this technique a specially designed finite impulse response (FIR) bandpass filter

is convolved with the columns in the imagery. The filter is designed to attenuate only the

spatial fi-equencies corresponding to the expected periodicity of the striping and at least

one harmonic. The filter is approximately 15 pixels in length and is slid over the entire

column of data.

3.5.5.8 Missing Bands

ASTER Channels

If Not Available

Then We Use

(1) 0.56 gm (2) 0.66 gm

(3n) 0.81 gm (2) 0.66 gm

(4) 1.65 gm

(5) 2.16 pm (6) 2.20 gm

(10) 8.3 gm (i1) 8.65 gm

(13) I0.6 gm (12) 9.1 gm

(14) 11.3 gm

4.0 CONSTRAINTS, LLMITATIONS, ASSUMPTIONS

The most significant constraint is that the current algorithm is developed only for

daytime data acquisitions. The current daytime algorithm will only be exercised on data in

which the solar zenith angle is less than 85 degrees. The nighttime algorithm is in the

process of extensive development.

Inadequate numbers ofLANDSAT TM scenes have been processed at present.

We cannot guarantee and do not believe that the entire range of representative samples

has been investigated. In particular, Arctic TM scenes with different cloud types, land,

and tundra are required. The M.AS data acquired for the Beaufort Sea will partially

alleviate this problem. Additional LANDSAT Polar scenes are being acquired.

For the present algorithm development, the LANDSAT TM calibration is adequate

for channels 1-5 and 7. However, the inliared channel 6 is essentially uncalibrated. This

has caused difficulties in our algorithm development. For example, ocean surfaces often

are retrieved with surface temperatures on the order of-12°C. However, unless they are

covered with ice, the ocean temperatures cannot be below -1.8°C. Our solution to this

calibration problem has been to examine the other visible/near-infrared channels for
indications of ice. Where none are found, we arbitrarily rescale the channel 6 radiances

such that open ocean water (away from any identifiable sea ice) is at -1.8°C. Another

problem is that most of the present 24 LANDSAT scenes do not have water in the scene.
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We areforcedto taketheaverage of these rescaling values found in the water scenes and

to apply it to the non-water scenes.

Due to the very high spatial resolution of the LANDSAT TM imagery, and using

the MCS image display system with its capability for multiple channel overlays, channel

differences and ratios, and 3-D clustering, we are relatively confident that most features

can be identified accurately for the daytime scenes. The most difficult case is thin cirrus

over a featureless snow-covered background. Availability of MAS and TIMS data will

allow us to validate the nighttime algorithm.
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